88 research outputs found

    Gravity and magnetic anomalies in the allochthonous Órdenes Complex (Variscan belt, northwest Spain): Assessing its internal structure and thickness

    Get PDF
    The Órdenes Complex is the largest Variscan allochthonous structure of NW Iberia, and preserves the suture of a long-standing Paleozoic ocean, probably the Rheic. Gravity and magnetic data, the latter specifically acquired on land for this study, show that the complex occupies the core of an open synform with a maximum depth of 9–10 km, which contrasts with the flat geometry of the lower crust and Moho discontinuity beneath. The maximum depth reached by the ophiolitic rocks marking the suture is around 7 km. The allochthonous units formed by basic and ultrabasic rocks are lens-shaped in section, and occur not only at the periphery of the complex, but form wide ribbons trending NE-SW to N-S. The Bouguer anomaly related with the longest of them, the Fornás Unit, previously used to support an autochthonous interpretation of the complexes, is modeled as a rootless, massive amphibolite body with a maximum thickness of 6 km located at the downthrown block of a large normal fault cutting across previous thrust faults and extensional detachments. The main magnetic anomalies are associated with ultrabasic rocks cropping out in the NW and SE, but a weak, wide anomaly in the central part of the complex is related with one or more thin layers of amphibolite partly mineralized with massive sulphides. The weakly arcuate geometry of this anomaly and of the Bouguer anomaly caused by the Fornás Unit may reflect the NE flank of the Central Iberian arc, an orocline whose core is occupied by the allochthonous complexes.FEDER, Ministerio de Ciencia e Innovación (Ramón y Cajal

    40Ar/39Ar laserprobe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia

    Get PDF
    The tectonothermal evolution of a polyorogenic terrane in the Variscan belt of NW Spain has been constrained by 40Ar/39Ar laserprobe incremental heating experiments on mylonitic fabrics developed in major structures. Transitional levels between HP–HT and IP upper units in the O´ rdenes Complex where metamorphic and structural records demonstrate two cycles of burial and exhumation were selected for dating. Two groups of ages have been defined: (1) Silurian–Early Devonian, obtained from mylonites of the Forna´s extensional detachment, here considered as the minimum age for the start of tectonic exhumation of the HP– HT units and an upper age-limit for the HP–HT event itself; (2) Early to Mid-Devonian, from structures related to the Variscan convergence in the area, which include top-to-the-east thrusts and extensional detachments. A single, younger Carboniferous age obtained from the uppermost allochthonous sequences possibly reflects the final stages of emplacement of the allochthonous complexes. Our data indicate a polyorogenic character for a part of the Iberian allochthonous complexes, including Variscan (sensu stricto) and Early Variscan convergence, as well as an older, Early Palaeozoic cycle

    Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers.

    Full text link
    [EN] Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. Here, we present the first fully operational BaZrO3-based tubular PCE, with 10 cm(2) active area and a hydrogen production rate above 15 Nml min(-1). The novel steam anode Ba1-xGd0.8La0.2+xCo2O6-delta exhibits mixed p-type electronic and protonic conduction and low activation energy for water splitting, enabling total polarization resistances below 1 Omega cm(2) at 600 degrees C and Faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs are mechanically robust, tolerate high pressures, allow improved process integration and offer scale-up modularity.The work leading to these results has received funding from the Research Council of Norway (grant 236828) and from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement 621244 ('ELECTRA') and Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement 779486 ('GAMER'). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.Vøllestad, E.; Strandbakke, R.; Tarach, M.; Catalán-Martínez, D.; Fontaine, M.; Beeaff, D.; Clark, DR.... (2019). Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials. 18(7):752-759. https://doi.org/10.1038/s41563-019-0388-2S75275918

    A tectonic carpet of Variscan flysch at the base of a rootless accretionary prism in northwestern Iberia: U–Pb zircon age constrains from sediments and volcanic olistoliths

    Get PDF
    The allochthonous complexes of Galicia–Trás-os-Montes Zone (NW Iberia) are part of a rootless tectonic stack which preserves part of a Variscan accretionary prism. They are formed by individual tectonic slices marked by specific tectonometamorphic evolutions, which were piled up in a piggy-back mode onto its relative autochthon, the Central Iberian Zone (CIZ). Allochthony decreases from the structurally upper thrust sheets towards the lower ones. The lowermost unit of the stack is known as the Parautochthon or Schistose Domain. It is characterized by a low metamorphic grade in contrast with higher temperatures and/or pressures estimated for the overlying allochthonous units and shares the stratigraphic sequence with the underlying autochthon. The Parautochthon is divided in two structural and stratigraphic sub-units: (i) the Lower Parautochthon (LPa) is made of synorogenic flysch-type sediments with varied turbiditic units and olistostrome bodies, showing Upper Devonian–lower Carboniferous age according to the youngest zircon populations and fossiliferous content; (ii) the Upper Parautochthon (UPa) is composed of highly deformed preorogenic upper Cambrian–Silurian volcano-sedimentary sequence comparable with the nearby autochthon and to some extent, also with the high-P and low-T Lower Allochthon laying structurally above. The UPa was emplaced onto the LPa along the Main-Trás-os-Montes Thrust, and the LPa became detached from the CIZ relative autochthon by a regional-scale structure, the Basal Lower Parautochthon Detachment, which follows a weak horizon of Silurian carbonaceous slates. A review on the detrital zircon studies on the synorogenic LPa complemented by zircon dating of 17 new samples is presented here. The results support the extension of the LPa underneath the NW Iberian allochthonous complexes, from Cabo Ortegal, to Bragança and Morais massifs. Its current exposure follows the lowermost tectonic boundary between the Galicia–Trás-os-Montes (allochthon) and Central Iberian (autochthon) zones. The youngest zircon age populations point to a maximum sedimentation age for the LPa formations ranging from Famennian to Serpukhovian and supports the piggy-back mode of emplacement of the Galicia–Trás-os-Montes Zone, of which it represents the latest imbricate. The zircon age populations in the LPa allow the sedimentary provenance areas to be constrained, showing the intervention of nearby sources (mostly the UPa) and/or multiply recycled and long-transport sediments with a typically north-central Gondwana age fingerprint, also found in the Lower Allochthon, UPa and Autochthon. Complementary geochronology of volcanic olistoliths trapped in the LPa sediments and of late Cambrian to Upper Ordovician rhyolites from the UPa is also presented. It shows a direct relationship between the major blocks source area (UPa) and the setting place (LPa). Old zircon age patterns show that the LPa sedimentary rocks were recycled from detrital rocks of the allochthon (advancing wedge) and the nearby autochthon (peripheral bulge).info:eu-repo/semantics/publishedVersio

    Caracterización conjunta del basamento en Hontomín (España) empleando datos sísmicos y microgravimétricos

    Get PDF
    9ª Asamblea Hispano Portuguesa de Geodesia y Geofísica: Madrid 28-30 de junio 2016 / Organizado por la Comisión Española de Geodesia y Geofísica ; Secçao Portuguesa das Unios Internacionais Astronomica e Geodésica ; Universidad Complutense de MadridInstitut de Ciéncies de la Terra Jaume Almera, EspañaDepartment of Geology and Petroleum Geology, University of Aberdeen, Reino UnidoDepartamento de Geología, Universidad de Salamanca, EspañaInstituto Geológico y Minero de España, EspañaPeer reviewe

    Basement structure of the Hontomín CO2 Geological storage facility (Burgos, Spain): integration of microgravity & 3D seismic reflection data

    Get PDF
    IX Congreso Geológico de España, Huelva, 12-14 de septiembre, 2016The structure of the Hontomín CO2 geological storage research facility has been addressed combining 3D seismic reflection data, borehole information and microgravity data. The integrated interpretation constrains the basement structural setting geometry and that of the sedimentary succession. The study unravels the deep structure and topography of the basement and quantifies the thickness of the Triassic Keuper evaporites. We describe a half-graben setting filled with Keuper evaporites (up to 2000 m) forming an extensional forced fold. Three set of faults are identified with two main fault systems compartmentalizing the area into three differentiated blocks. These faults have been interpreted to be reactivated normal faults that have led to the formation of the Hontomín dome.Institut de Ciéncies de la Terra Jaume Almera, EspañaDepartment of Geology and Petroleum Geology, University of Aberdeen, Reino UnidoDepartamento de Geología, Universidad de Salamanca, EspañaInstituto Geológico y Minero de España, Españ

    Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles

    Get PDF
    By the end of the Carboniferous, the crust of the continental shelf in northwestern Spain was made up of deeply rooted structures related to the Variscan collision. From Permian to Triassic times the tectonic setting had changed to mainly extensional and the northern Iberian continental margin underwent rifting during Late Jurassic-Early Cretaceous times, along with sea-floor spreading and the opening of the Bay of Biscay until the Late Cretaceous. Subsequently, the northern Iberian margin was active during the north-south convergence of Eurasia and Iberia in the Tertiary. A multichannel seismic experiment, consisting of two profiles, one north-south (ESCIN-4) crossing the platform margin offshore Asturias, and another (ESCIN-3) crossing the platform margin to the northwest of Galicia, was designed to study the structure of the northern Iberian margin. The ESCIN-4 stacked section reveals inverted structures in the upper crust within the Le Danois Basin. North of the steep continental slope, ESCIN-4 shows a thick sedimentary package from 6 to 9.5 s, two-way travel time (TWT). Within this latter package, a 40-km-long, north-tapering wedge of inclined, mainly south-dipping reflections is thought to represent a buried, Alpine-age accretionary prism. In the north western part of the ESCIN-3 (ESCIN-3-1) stacked section, horizontal reflections from 6.5 to 8.5 s correspond to an undisturbed package of sediments lying above oceanic-type basement. In this part of the line, a few kilometres long, strong horizontal reflection at 11.2 s within the basement may represent an oceanic Moho reflection. Also, a band of reflections dips gently towards the southeast, from the base of the gently dipping continental slope. The part of ESCIN-3 line that runs parallel to the NW-Galicia coast (ESCIN-3-2), is characterized by bright, continuous lower crustal reflections from 8 to 10 s. Beneath the lower crustal reflectivity, a band of strong reflections dips gently toward the southwest from 10 to 13.5 s. The part of ESCIN-3 that parallels the northern margin (ESCIN 3-3), shows good reflectivity in all levels. Upper crustal reflections image the sedimentary fill of probable Mesozoic to recent basins. Mid-crustal reflectivity is characterized by dipping reflections until 8 s that are probably related to compressional Variscan features. The lower crustal level shows 'layered' reflections between 8 and 12 s. Dipping reflections are found below the continental Moho.J. Alvarez-Marrón held a post-doc research grant from the Ministry of Education and Science of Spain. The ESCI-N program was sponsored by the Spanish agencies CICYT (project GEO 90-0660) and FICYT, and STRIDE Program of the EU.Peer Reviewe

    A comparative study of the antiangiogenic activity of hydroxytyrosyl alkyl ethers

    Get PDF
    Versión preprint del manuscrito de los autores, publicado finalmente en: Food Chemistry 333 (2020) 127476 con DOI: 10.1016/j.foodchem.2020.127476The phenolic compound hydroxytyrosol and its derivatives are responsible for some of the health benefits of the intake of virgin olive oil, having shown antiangiogenic properties. In this study, we explored the antiangiogenic potential of six synthetic hydroxytyrosyl alkyl ethers (HT C1, C2, C4, C6, C8 and C12). Our results showed that all compounds affected endothelial cell viability in vitro at low micromolar doses. In addition, compounds HT C1, C2, C4 and C6 inhibited endothelial cell migration and formation of tubular-like structures. In these assays, hydroxytyrosyl hexyl ether (HT C6) exhibited the most potent inhibitory activity in vitro, activating as well apoptosis in endothelial cells. Furthermore, the antiangiogenic activity of HT C6 was confirmed in vivo in the chick chorioallantoic membrane assay. Hence, we present hydroxytyrosol synthetic derivative HT C6 as a new antiangiogenic compound and as a good candidate for an antiangiogenic drug in the treatment of angiogenesisdependent diseases.This work was supported by the Spanish Ministry of Science, Innovation and Universities (grants AGL2007-66373 and PID2019- 105010RB-I00), Andalusian Government and FEDER (P12-CTS-1507, UMA18-FEDERJA-220 and funds from group BIO 267), as well as funds from the University of Málaga (“Plan Propio de Investigación y Transferencia”). The “CIBER de Enfermedades Raras” and “CIBER de Enfermedades Cardiovasculares” are initiatives from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
    corecore